Project Area Z IBDome

The IBDome project will develop a web-accessible database that integrates large-scale omic-datasets from IBD patients with corresponding clinical disease status. The database will include two types of data: 1) data from deep profiling using cutting-edge technologies on a specified exemplary patient cohort including controls provided by four preselected projects of the consortium, and 2) data […]

Project Area C04

Adoptive transfer of regulatory T cells (Treg) has successfully been used for blockade of experimental colitis in vivo, but their usage for treatment of patients with ulcerative colitis (UC) remains poorly studied. Gut homing and effects on the gut epithelium of these Treg are detrimental to suppress gut-specific inflammation. In this project, we will further […]

Project Area C03

A clinical phase-III-study was designed to test tDCS (transcranial direct current stimulation) on its analgesic effects in IBD-patients with chronic abdominal pain. fMRI scans will be performed in these patients in order to investigate changes in the central nervous system. Based on preliminary data we propose a brain – gut interaction. This will be evaluated […]

Project Area C02

We will test clinically approved antibodies targeting cytokine signaling or integrin-based homing of immune cells in the gut for their potential to allow endoscopic molecular in vivo imaging in ulcerative colitis patients. The GMP conform fluorescent antibodies will be applied to the inflamed mucosa of ulcerative colitis patients during endoscopic confocal laser endomicroscopy to decipher […]

Project Area C01

Advanced label-free optical technologies such as multiphoton microscopy and Raman spectroscopy hold great potential for a characterization of mucosal inflammation in vivo. Using these approaches, we will evaluate optical properties of epithelial barrier function and dysfunction as well as consequences of epithelial barrier defects including immune cell infiltration and bacterial translocation in preclinical colitis models […]

Project Area B07

Foxp3+ regulatory T cells (Tregs) are key players for the maintenance of tolerance against self and harmless exogenous antigens, such as the intestinal microbiota. Microbiota-specific Tregs therefore represent powerful targets for novel and specific therapies in inflammatory bowel disease (IBD). We have developed technologies to identify and characterize human microbiota-specific Tregs. We will screen for […]

Project Area B06

Impairment of the tight junction (TJ) is linked to enhanced luminal antigen uptake supporting inflammatory processes in IBD. We hypothesize that especially the tricellular tight junction (tTJ) is crucially involved in this and in immune cell activation. Thus, we will analyze effects and interactions between the (t)TJ and the immune cells beyond during development of […]

Project Area B05

Recent data suggests an emerging role for peptidergic neurons in the pathogenesis of intestinal inflammation. Neuropeptide release is controlled by transient receptor potential (TRP) channels. Own data suggest a previously unknown role of extra-neuronal TRP channel expression in intestinal immune and epithelial cells as well, indicating a complex neuro-immune-epithelial signaling network in the gut. The […]